33 research outputs found

    Innate immune system activation in zebrafish and cellular models of Diamond Blackfan Anemia.

    Get PDF
    Deficiency of ribosomal proteins (RPs) leads to Diamond Blackfan Anemia (DBA) associated with anemia, congenital defects, and cancer. While p53 activation is responsible for many features of DBA, the role of immune system is less defined. The Innate immune system can be activated by endogenous nucleic acids from non-processed pre-rRNAs, DNA damage, and apoptosis that occurs in DBA. Recognition by toll like receptors (TLRs) and Mda5-like sensors induces interferons (IFNs) and inflammation. Dying cells can also activate complement system. Therefore we analyzed the status of these pathways in RP-deficient zebrafish and found upregulation of interferon, inflammatory cytokines and mediators, and complement. We also found upregulation of receptors signaling to IFNs including Mda5, Tlr3, and Tlr9. TGFb family member activin was also upregulated in RP-deficient zebrafish and in RPS19-deficient human cells, which include a lymphoid cell line from a DBA patient, and fetal liver cells and K562 cells transduced with RPS19 shRNA. Treatment of RP-deficient zebrafish with a TLR3 inhibitor decreased IFNs activation, acute phase response, and apoptosis and improved their hematopoiesis and morphology. Inhibitors of complement and activin also had beneficial effects. Our studies suggest that innate immune system contributes to the phenotype of RPS19-deficient zebrafish and human cells

    Zebrafish Models for Dyskeratosis Congenita Reveal Critical Roles of p53 Activation Contributing to Hematopoietic Defects through RNA Processing

    Get PDF
    Dyskeratosis congenita (DC) is a rare bone marrow failure syndrome in which hematopoietic defects are the main cause of mortality. The most studied gene responsible for DC pathogenesis is DKC1 while mutations in several other genes encoding components of the H/ACA RNP telomerase complex, which is involved in ribosomal RNA(rRNA) processing and telomere maintenance, have also been implicated. GAR1/nola1 is one of the four core proteins of the H/ACA RNP complex. Through comparative analysis of morpholino oligonucleotide induced knockdown of dkc1 and a retrovirus insertion induced mutation of GAR1/nola1 in zebrafish, we demonstrate that hematopoietic defects are specifically recapitulated in these models and that these defects are significantly reduced in a p53 null mutant background. We further show that changes in telomerase activity are undetectable at the early stages of DC pathogenesis but rRNA processing is clearly defective. Our data therefore support a model that deficiency in dkc1 and nola1 in the H/ACA RNP complex likely contributes to the hematopoietic phenotype through p53 activation associated with rRNA processing defects rather than telomerase deficiency during the initial stage of DC pathogenesis

    Ribosomopathies: how a common root can cause a tree of pathologies

    No full text
    Defects in ribosome biogenesis are associated with a group of diseases called the ribosomopathies, of which Diamond-Blackfan anemia (DBA) is the most studied. Ribosomes are composed of ribosomal proteins (RPs) and ribosomal RNA (rRNA). RPs and multiple other factors are necessary for the processing of pre-rRNA, the assembly of ribosomal subunits, their export to the cytoplasm and for the final assembly of subunits into a ribosome. Haploinsufficiency of certain RPs causes DBA, whereas mutations in other factors cause various other ribosomopathies. Despite the general nature of their underlying defects, the clinical manifestations of ribosomopathies differ. In DBA, for example, red blood cell pathology is especially evident. In addition, individuals with DBA often have malformations of limbs, the face and various organs, and also have an increased risk of cancer. Common features shared among human DBA and animal models have emerged, such as small body size, eye defects, duplication or overgrowth of ectoderm-derived structures, and hematopoietic defects. Phenotypes of ribosomopathies are mediated both by p53-dependent and -independent pathways. The current challenge is to identify differences in response to ribosomal stress that lead to specific tissue defects in various ribosomopathies. Here, we review recent findings in this field, with a particular focus on animal models, and discuss how, in some cases, the different phenotypes of ribosomopathies might arise from differences in the spatiotemporal expression of the affected genes

    p53 Upregulation Is a Frequent Response to Deficiency of Cell-Essential Genes

    Get PDF
    Background: The role of p53 in the prevention of development of embryos damaged by genotoxic factors is well recognized. However, whether p53 plays an analogous role in preventing birth defects from genetic mutations remains an unanswered question. Genetic screens for mutations affecting development show that only a fraction of developmentally lethal mutations leads to specific phenotypes while the majority results in similar recurrent phenotypes characterized by neuronal apoptosis and developmental delay. Mutations in cell-essential genes typically fall into this group. The observation that mutations in diverse housekeeping genes lead to a similar phenotype suggests a common mechanism underlying this phenotype. For some mutants, p53 inhibition was shown to attenuate the phenotype. Methodology/Principal Findings: To find out how common p53 involvement is in this phenotype, we analyzed zebrafish mutants from various categories of cell essential genes. Several thousand zebrafish mutants have been identified; many of them are kept at stock centers and available for the research community. We selected mutants for genes functioning in DNA replication, transcription, telomere maintenance, ribosome biogenesis, splicing, chaperoning, endocytosis, and cellular transport. We found that mutants have similar phenotypes including neural apoptosis, failure to develop structures originated from the neural crest cells, and hematopoietic defects. All mutants share p53 upregulation and similar changes in several p53-dependent and independent molecular pathways

    The mutants had shift in energy production to aerobic respiration with supression of glycolysis.

    No full text
    <p>Examples in changes in expression of <i>6-phosphofructokinase, muscle (pfkm)</i> and <i>triosephosphate isomerase 1a(tpi1a)</i> are shown. 48 hpf, qPCR.</p

    In addition to p53, other stress response pathways were activated in the mutants.

    No full text
    <p><b>A</b>) <i>fos</i>, a component of AP-1 factor was upregulated. <b>B</b>) <i>fibrinogen</i> involved in acute phase response was upregulated. <b>C</b>) Innate immune mechanisms involving complement and interferon systems were upregulated. <b>D</b>) <i>pomc</i> that encodes precursor of peptides involved in hypothalamo-pituitary-adrenal hormonal axis response was upregulated.</p
    corecore